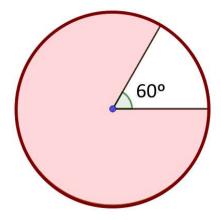
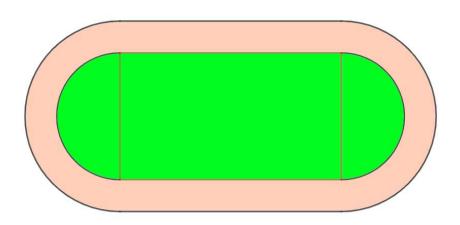

A. ÁREAS Y LONGITUDES DE FIGURAS PLANAS.

- **9.1.** Resuelve correctamente las siguientes cuestiones:
 - a) Calcula el área de un triángulo cuya base mide 12 cm y altura 7 cm.
 - b) Un rectángulo de 8 cm × 6 cm se divide en dos triángulos por una diagonal. Demuestra que ambos tienen la misma área.
 - b) Halla el área de un trapecio de bases 15 cm y 9 cm, y altura 8 cm.
- 9.2. Representa aproximadamente, un cuadrado de lado 5 cm que tiene adosado, en cada lado, un triángulo isósceles de base el mismo lado del cuadrado y lados iguales de 7 cm. Calcula el área total.
- **9.3.** La "bombilla" del área restringida de un campo de baloncesto está formada por un rectángulo de 5,8 m de largo y 4,9 m de ancho, al que se le ha añadido un semicírculo de diámetro 4,9 m sobre el lado de 4,9 m. Calcula el área total de la figura.

9.5. Un cuadrado de lado 20 cm contiene un círculo inscrito. Calcula el área sombreada que queda entre el cuadrado y el círculo.




9.6. Calcular el área A de un triángulo escaleno con lados a=13, b=14 y c=15 cm a partir de la formula que enunció Herón de Alejandría:

$$A = \sqrt{s \cdot (s-a) \cdot (s-b) \cdot (s-c)} , \quad s = \frac{a+b+c}{2}$$

9.7. En un círculo de radio 10 cm, calcular el área de un sector de ángulo 60°.

- 9.8. En un círculo de diámetro 8 cm, calcular la longitud de arco que determina una amplitud de ángulo de 30°
- 9.9. Calcular el área y el perímetro de las siguientes figuras,
 - a) Un pentágono regular de radio 8,5 cm y apotema 6,9 cm
 - a) Un hexágono regular de lado 8 cm.
 - b) Un octógono regular de lado 6 cm y radio 7,84 cm.
- **9.10.** Una pista de atletismo se forma con un rectángulo de 80 × 40 m y dos semicírculos en los extremos. Calcular su superficie.

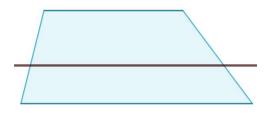
B. TEOREMA DE PITÁGORAS

- **9.11.** Calcula la hipotenusa de un triángulo rectángulo cuyos catetos miden 9 cm y 12 cm. ¿Es rectángulo el triángulo de lados 7 cm, 24 cm y 25 cm?
- **9.12.** Halla la diagonal de un rectángulo de lados 15 cm y 20 cm.
- **9.13.** Calcula la altura de un triángulo isósceles de lados iguales 13 cm y base 10 cm.
- **9.14.** Una escalera de longitud 5 m permite, como se ve en la foto, subir al primer piso de un edificio. Su base mide 1,5 m en horizontal. ¿A qué altura está el primer piso?

- **9.15.** Un poste de 10 m proyecta una sombra de 6 m. Un objeto cercano proyecta una sombra de 2,4 m. Calcula la altura del objeto.
- **9.16.** Una escalera plegable de dos tramos iguales tiene 1,5 m de longitud en cada tramo. Cuando la escalera se abre, la distancia entre los extremos inferiores de los tramos es de 1,0 m. Calcula la altura máxima que alcanza el punto de unión de los dos tramos (el vértice superior de la escalera).
- **9.17.** Un cuadrado está inscrito en un círculo de radio 5v2 cm. Halla el área del cuadrado.

- **9.18.** Halla la distancia entre los puntos A(-3, 2) y B(4, -2) en el plano, utilizando el teorema de Pitágoras.
- 9.18. Calcula la altura de un triángulo equilátero de lado 14 cm.

9.19. En una pantalla de televisión con diagonal de 55 pulgadas (1 pulgada = 2,54 cm) y relación de lados 16:9, calcula ancho y alto de la pantalla.

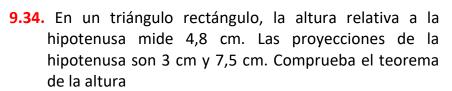


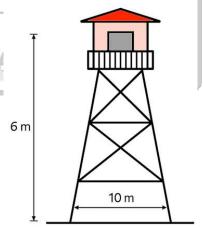
9.20. En un triángulo rectángulo, un cateto mide el doble que el otro y la hipotenusa mide 10 cm. Calcula los catetos.

C. TEOREMA DE TALES

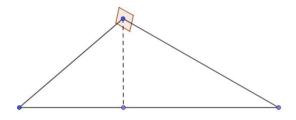
- 9.21. En un triángulo, una paralela al lado mayor divide a los otros dos lados en segmentos de 6 cm y 9 cm, y de 4 cm y 6 cm. Comprueba que los triángulos formados son semejantes.
- **9.22.** Un triángulo semejante a otro tiene razón de semejanza 3:5. Si el lado mayor del pequeño mide 9 cm, calcula el correspondiente lado del grande.
- **9.23.** Un edificio de 24 m proyecta una sombra de 18 m. En el mismo instante, un poste proyecta una sombra de 3 m. Halla la altura del poste.
- altura del poste.

 9.24. Comprueba que dos triángulos con lados
 4, 6 y 8 cm y 6, 9 y 12 cm son semejantes.
- **9.25.** Un trapecio tiene bases 12 cm y 20 cm. Una paralela a las bases lo corta en un trapecio menor semejante al original cuya base mayor mide 15 cm. Calcula la base menor de este trapecio menor.





- **9.26.** Construye un triángulo semejante al de lados 5 cm, 7 cm y 8 cm con razón de semejanza 2:3. Halla los lados del nuevo triángulo y su área. Divide el área del nuevo triángulo y el antiguo. Toma este valro, ¿qué relación existe con la razón de semejanza?
- **9.27.** Se quiere medir un árbol. Una persona de 1,70 m proyecta una sombra de 2 m. El árbol proyecta una sombra de 9,4 m. Halla la altura del árbol.
- **9.28.** Una recta paralela a un lado de un triángulo divide a los otros lados en segmentos de 8 cm y 12 cm, y de 10 cm y 15 cm. Comprueba la semejanza de los triángulos.
- **9.29.** Un triángulo rectángulo tiene hipotenusa 20 cm y una proyección de cateto de 8 cm. Halla la longitud de ese cateto.


D. TEOREMA DE LA ALTURA Y DEL CATETO.

- **9.31.** Calcula la altura sobre la hipotenusa de un triángulo rectángulo de catetos 6 cm y 8 cm.
- 9.32. En un triángulo rectángulo de hipotenusa 10 cm y catetos 6 cm y 8 cm, calcula las proyecciones de los catetos sobre la hipotenusa.
- 9.33. Una torre de vigilancia triangular tiene un triángulo rectángulo en su estructura metálica para reforzar la estabilidad. La hipotenusa de uno de los triángulos mide 10 m y la altura desde el vértice recto hasta la hipotenusa mide 6 m. Calcula las longitudes de los catetos del triángulo usando el teorema de la altura y del cateto.

- **9.35.** Un triángulo equilátero de lado 12 cm está inscrito en un círculo. Calcula la altura del triángulo aplicando el teorema del cateto.
- 9.36. Una cometa vuela sostenida por dos cuerdas de 20 m y 30 m que forman con el suelo un triángulo. La cometa está a 12 m de altura. Halla la distancia horizontal entre los dos lugares de sujeción y la proyección de la cometa en el suelo.

- **9.37.** En un triángulo rectángulo, la hipotenusa mide 15 cm y las proyecciones de los catetos sobre la hipotenusa son 9 cm y 6 cm. Halla los catetos del triángulo
- 9.38. Un arquitecto está diseñando un parque triangular y decide colocar un pequeño estanque en forma de triángulo rectángulo en su boceto en plana. El triángulo tiene un cateto que mide 18 m y otro que mide 24 m. Para instalar un camino de grava que vaya desde el vértice del ángulo recto hasta la hipotenusa, necesita conocer la longitud de la altura desde el ángulo recto a la hipotenusa, así como las proyecciones de los catetos sobre la hipotenusa para colocar los bordes del camino correctamente. Calcula la hipotenusa del triángulo. Calcula la altura desde el ángulo recto a la hipotenusa usando el teorema de la altura. Calcula las proyecciones de los catetos sobre la hipotenusa usando el teorema del cateto.

E. PROBLEMAS.

- **9.41.** Una figura irregular está formada por un cuadrado de lado 10 cm al que se adosa un triángulo rectángulo de catetos 10 cm y 24 cm. Calcula el área total descomponiendo en figuras simples.
- 9.42. Una parcela tiene forma de trapecio isósceles con bases de 20 m y 12 m y lados oblicuos de 10 m. Calcular el área.
- 9.43. En un triángulo rectángulo, inscribir un cuadrado apoyado en un cateto. Calcular el área del cuadrado si los catetos miden 12 y 16 cm. 9.41. Una cometa cuadrada de lado 30 cm está dividida en cuatro triángulos por sus diagonales. Calcula el área de cada triángulo si las diagonales miden 48 cm y 36 cm.
- 9.44. Una rueda de bicicleta tiene radio 35 cm. Calcula la longitud de un arco de 144°.
- **9.45.** Un triángulo rectángulo de catetos 7 m y 24 m está inscrito en un círculo. Calcula el radio de la circunferencia.
- 9.46. Un puente en arco semicircular tiene una base de 20 m. Halla su arco máximo.
- **9.47.** Un terreno triangular tiene lados de 13 m, 14 m y 15 m. Calcula su área y la altura sobre el lado mayor.
- **9.48.** Una figura está formada por un trapecio rectángulo de bases 20 cm y 12 cm, y altura 8 cm, al que se le añade un triángulo rectángulo en uno de sus lados menores de catetos 6 cm y 8 cm. Calcula el área total.
- **9.49.** Un ingeniero quiere construir un puente triangular sobre un río. El puente tendrá forma de triángulo rectángulo, donde la base del puente, que será la hipotenusa del triángulo, está apoyada en ambas orillas del. Se sabe que los catetos del puente

miden 12 m y 8 m. ¿Cuánto mide la anchura del rio? Calcula la altura máxima del puente.

- **9.50.** En un mapa a escala 1:25 000, calcula la distancia real entre mi casa y la casa de mi amiga Marta, sabiendo que en el plano forman un triángulo rectángulo de catetos 3,6 cm y 5,2 cm con el Ayuntamiento.
- **9.51.** Una circunferencia de radio 10 cm contiene un triángulo rectángulo inscrito cuyo cateto mide 8 cm y su hipotenusa está sobre el diámetro. Calcula la altura del triángulo relativa a la hipotenusa.
- **9.52.** Una pirámide cuadrada tiene aristas de la base de 12 cm y aristas laterales de 10 cm. Calcula su altura aplicando Pitágoras y Tales.

AVISO LEGAL Y CRÉDITOS DE IMÁGENES

Este documento no tiene fines comerciales y su propósito es servir como material de apoyo para clases de matemáticas. Su finalidad es exclusivamente educativa y/o divulgativa, y se distribuye de forma totalmente gratuita para todo aquel docente o alumno/a que quiera utilizarlo para aprender matemáticas.

El responsable y legítimo autor de este documento no comercializa ni obtiene beneficio económico por creación y su difusión. Si este documento aparece publicado fuera de la web *lawebdelprofedemates.es* o se solicita alguna donación o compensación económica por su descarga o uso, se advierte que dicha solicitud no cuenta con la autorización del autor. Este material ha sido publicado en internet sin ánimo de lucro y puede obtenerse gratuitamente en la web mencionada.

El documento incluye imágenes obtenidas de diferentes plataformas que, según su información pública en el momento de la descarga, ofrecían material de dominio público y/o bajo licencias que permiten su uso gratuito, incluyendo, entre otras:

VectorPortal:https://vectorportal.com/

PublicDomainPictures: https://www.publicdomainpictures.net/

LetsDraw.it:https://letsdraw.it/

Pixnio:https://pixnio.com/

Flickr:https://www.flickr.com/

PxHere:https://pxhere.com/

Pexels:https://www.pexels.com/

Wikipedia/WikimediaCommons: https://es.wikipedia.org/wiki/

No obstante, debido a la gran cantidad de material gráfico utilizado, no siempre es posible identificar la fuente exacta de cada imagen. En todos los casos, se ha procurado cumplir con las condiciones de uso y atribución establecidas por cada plataforma o autor.

Si usted es titular de derechos sobre alguna de las imágenes aquí incluidas y considera que su uso vulnera sus derechos o no respeta los términos de su licencia, por favor, puede comunicarse con el responsable de este documento a partir la web <u>lawebdelprofedemates.es</u>o del correo del autor <u>lawebdelprofedemates@gmail.com</u>. Se procederá a su revisión inmediata para su modificación o retirada, siempre que el documento se encuentre alojado en un espacio web bajo la propiedad o administración del autor. No nos podemos hacer responsables de modificaciones o ausencia de las mismas sobre el presente documento en el caso de que haya sido descargado y publicado en otro lugar de internet y, por tanto, hayamos perdido la protección y control sobre el mismo.

Este documento se distribuye bajo una licencia <u>CreativeCommons Reconocimiento-NoComercial-CompartirIgual</u> 4.0 Internacional.

