

1 ° BACH. – MATEMÁTICAS I LOS NÚMEROS COMPLEJOS

A. CÁLCULO MEDIANTE ECUACIONES Y REPRESENTACIÓN NÚMEROS COMPLEJOS

6.1. Resuelve las siguientes ecuaciones dando todas las soluciones, reales y complejas.

a)
$$2x^2 + 3x + 5 = 0$$

b)
$$-x^2+2x-3=0$$

c)
$$x^3 + 2x^2 + 7x = 0$$

d)
$$x^4 + 16 = 0$$

e)
$$x^3 + x^2 + 4x + 4 = 0$$

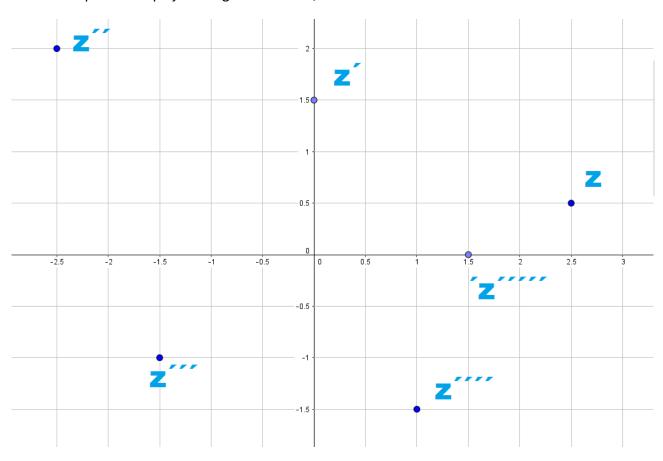
$$f$$
) $x^3 - 2x^2 + 3x - 6 = 0$

6.2. Responde a partir de las ecuaciones anteriores,

a) ¿Cuántas raíces complejas tiene cada ecuación? ¿Hay un número par o impar?

b) ¿Qué relación existe entre las raíces complejas de una ecuación?

6.3. Escribe los números complejos z, z', z''', z'''' de los que sus afijos vienen representados en el plano complejo del siguiente modo,



1 º BACH. – MATEMÁTICAS I LOS NÚMEROS COMPLEJOS

B. OPERACIONES CON NÚMEROS COMPLEJOS EN FORMA BINÓMICA O CARTESIANA

6.4. Opera y escribe cada apartado como un número complejo en forma binómica,

a)
$$i^3 - i^2 + 2i + 3$$

b)
$$3i^7 + 4i^6 - 5i^3 + 3i^2$$

c)
$$8i^4 - 5i^2 + 3$$

d)
$$-2i^{22}-3i^{45}+9i^{33}+i^{52}$$

6.5. Opera en forma binómica los números complejos y expresa la solución mediante dicha forma,

a)
$$4+3i-2\cdot(3+5i)+3i\cdot(-4+i)$$
 b) $7\cdot(4-5i)-4i\cdot(1+i)-2i$

b)
$$7 \cdot (4-5i) - 4i \cdot (1+i) - 2i$$

c)
$$(5-2i) \cdot (3+2i) + 3-9i$$

d)
$$(3+i) \cdot (2i-1) - i \cdot (1+2i)$$

e)
$$(3+4i) \cdot (5-2i) - (2+i) \cdot 3i$$

$$f)$$
 $6i \cdot (-2 + 8i) - (-2 + 6i) \cdot (4 - 2i)$

6.6. Opera en forma binómica los números complejos y expresa la solución mediante dicha forma,

$$a) \ \frac{-4+i}{3+2i}$$

b)
$$\frac{1+6i}{-3i+5}$$
 c) $\frac{4+3i}{2i}$ d) $\frac{2}{1-i}$

$$c) \quad \frac{4+3i}{2i}$$

$$d) \quad \frac{2}{1-i}$$

$$e) \ \frac{2+3i}{-i}$$

$$f) = \frac{5i}{-i+2}$$

$$g) \quad \frac{2-i}{1-4i}$$

e)
$$\frac{2+3i}{-i}$$
 f) $\frac{5i}{-i+2}$ g) $\frac{2-i}{1-4i}$ h) $\frac{4+2i}{-3+2i}$

6.7. Opera en forma binómica los números complejos y expresa la solución mediante dicha forma,

a)
$$(2+3i)^3$$

b)
$$(-1+2i)^2$$

$$c) \quad (4+i)^2$$

d)
$$(3-4i)^3$$

e)
$$(-2-i)^2$$

$$(f) \quad \left(\frac{1}{2}-2i\right)^{\frac{1}{2}}$$

C. FORMA POLAR Y TRIGONOMÉTRICA DE NÚMEROS COMPLEJOS

6.8. Calcula la forma trigonométrica, polar y exponencial de los siguientes números complejos que están expresados en forma binómica.

a)
$$3 - 4i$$

$$b) - 6 - 8i$$

$$c) 2 + i$$

$$d) - 4i$$

$$(e) - 1 + 2i$$
 $(f) - 5$

$$f) - 5$$

$$(g) - 4 + 5i$$
 $h) 2 - 3i$

h)
$$2 - 3$$

6.9. Calcula la forma trigonométrica y la forma binómica de los siguientes números complejos que están expresados en forma polar.

a)
$$5_{150^{\circ}}$$

b)
$$2_{-\frac{\pi}{3}}$$

$$d) 6\frac{\pi}{5}$$

$$f) 7_{-\frac{\pi}{4}}$$

g)
$$8_{\frac{5\pi}{6}}$$

h)
$$3_{\frac{3\pi}{4}}$$

1 ° BACH. – MATEMÁTICAS I **LOS NÚMEROS COMPLEJOS**

6.10. Calcula la forma polar y binómica de los siguientes números complejos que están expresados en forma exponencial

a)
$$z = 3 \cdot \left(\cos\left(\frac{5\pi}{3}\right) + i \cdot sen\left(\frac{5\pi}{3}\right)\right)$$

a)
$$z = 3 \cdot \left(\cos\left(\frac{5\pi}{3}\right) + i \cdot sen\left(\frac{5\pi}{3}\right)\right)$$
 b) $z = \sqrt{2} \cdot \left(\cos\left(-\frac{3\pi}{4}\right) + i \cdot sen\left(-\frac{3\pi}{4}\right)\right)$

c)
$$z = \cos(5\pi) + i \cdot sen(5\pi)$$

d)
$$z = 4 \cdot \left(\cos\left(-\frac{3\pi}{2}\right) + i \cdot sen\left(-\frac{3\pi}{2}\right)\right)$$

$$e) \quad z = \sqrt{3} \cdot \left(\cos \left(-\frac{7\pi}{6} \right) + i \cdot sen \left(-\frac{7\pi}{6} \right) \right) \qquad f) \quad z = 2 \cdot \left(\cos \left(\frac{10\pi}{6} \right) + i \cdot sen \left(\frac{10\pi}{6} \right) \right)$$

$$f)$$
 $z = 2 \cdot \left(\cos\left(\frac{10\pi}{6}\right) + i \cdot sen\left(\frac{10\pi}{6}\right)\right)$

6.11. Calcula la forma polar y binómica de los siguientes números complejos que están expresados en forma exponencial

a)
$$z = 4 \cdot e^{-i}$$

a)
$$z = 4 \cdot e^{-i}$$
 b) $z = \sqrt{2} \cdot e^{\frac{3\pi}{4}i}$ c) $z = 3 \cdot e^{-\frac{\pi}{2}i}$

c)
$$z = 3 \cdot e^{-\frac{\pi}{2}i}$$

$$d)\ z=e^{2\pi i}$$

e)
$$z = \frac{e^{\frac{5\pi}{6}i}}{3}$$
 f) $z = 5 \cdot e^{-\frac{\pi}{3}i}$ g) $z = 6 \cdot e^{\frac{2\pi}{5}i}$ h) $z = 2 \cdot e^{\pi i/2}$

$$f) z = 5 \cdot e^{-\frac{\pi}{3}i}$$

$$g) \ z = 6 \cdot e^{\frac{2\pi}{5}i}$$

$$h) \ z = 2 \cdot e^{\pi i/2}$$

D. OPERACIONES EN FORMA POLAR Y EXPONENCIAL

6.12. La forma polar de los números complejos es muy útil y más rápida cuando se trata de multiplicar, dividir y hacer potencias. Escribe, la fórmula que determina las siguientes operaciones de complejos en forma polar,

a)
$$r_{\alpha} \cdot r'_{\beta} = (r \cdot r')_{(\alpha+\beta)}$$

a)
$$r_{\alpha} \cdot r'_{\beta} = (r \cdot r')_{(\alpha+\beta)}$$
 b) $\frac{r_{\alpha}}{r'_{\beta}} = \left(\frac{r}{r'}\right)_{(\alpha-\beta)}$ c) $(r_{\alpha})^n = (r^n)_{n\alpha}$

$$c) (r_{\alpha})^n = (r^n)_{n\alpha}$$

6.13. Aplica las fórmulas anteriores para calcular en forma polar las siguientes operaciones, dejando la solución en forma polar y luego pasando a forma binómica,

a)
$$4_{30^{\circ}} \cdot 6'_{-150^{\circ}}$$

b)
$$2\frac{2\pi}{3} \cdot 3_{-\frac{5\pi}{6}}$$

c)
$$\frac{18_{55^{\circ}}}{6_{100^{\circ}}}$$

$$d) \frac{3\frac{3\pi}{2}}{\sqrt{3}\frac{\pi}{4}}$$

$$e$$
) $\left(4\frac{\pi}{6}\right)^6$

$$f) 15_{-\frac{\pi}{3}} : 5_{-\frac{\pi}{2}}$$

$$g)\left(2\frac{2\pi}{3}\right)^{10}$$

$$h) \frac{18_{\frac{2\pi}{5}}}{6_{-3\pi}}$$

1 ° BACH. – MATEMÁTICAS I LOS NÚMEROS COMPLEJOS

6.14. Aplica las fórmulas anteriores para calcular en forma polar las siguientes operaciones, dejando la solución en forma polar y luego pasando a forma binómica,

a)
$$\left(4\frac{5\pi}{3} \cdot 3 - \frac{\pi}{6}\right)^4$$
 b) $\frac{8\frac{\pi}{2} \cdot 6 - \frac{\pi}{3}}{2 - \frac{\pi}{4} \cdot 12 - \frac{\pi}{6}}$ c) $\frac{\left(3\frac{3\pi}{4}\right)^3}{\left(9\frac{2\pi}{4}\right)^2}$ d) $\left(\frac{2-\pi}{\sqrt{2}\pi}\right)^3$

$$b) \ \frac{8\frac{\pi}{2} \cdot 6_{-\frac{\pi}{3}}}{2_{-\frac{\pi}{4}} \cdot 12_{-\frac{\pi}{6}}}$$

$$c) \frac{\left(3_{\frac{3\pi}{4}}\right)^3}{\left(9_{-\frac{2\pi}{3}}\right)^2}$$

$$d) \left(\frac{2_{-\pi}}{\sqrt{2}_{\pi}} \right)^3$$

$$e) \quad \frac{2\frac{3\pi}{2} \cdot 4\frac{2\pi}{3}}{\left(\sqrt{2}\frac{\pi}{4}\right)^5}$$

$$f) \left(\frac{\sqrt{8}_{5\pi}}{\sqrt{2}_{-\frac{\pi}{2}}}\right)^4$$

$$g) \frac{\left(3_{\frac{3\pi}{2}} \cdot 2_{-\frac{2\pi}{3}}\right)^3}{36\pi \cdot 6_{\frac{\pi}{2}} \cdot 6_{-\frac{\pi}{4}}}$$

$$e) \quad \frac{2_{3\pi} \cdot 4_{\frac{2\pi}{3}}}{\left(\sqrt{2}_{\frac{\pi}{4}}\right)^{5}} \qquad f) \quad \left(\frac{\sqrt{8}_{\frac{5\pi}{4}}}{\sqrt{2}_{-\frac{\pi}{2}}}\right)^{4} \qquad \qquad g) \quad \frac{\left(3_{\frac{3\pi}{2}} \cdot 2_{-\frac{2\pi}{3}}\right)^{3}}{36_{\frac{\pi}{3}} : 6_{-\frac{\pi}{6}}} \qquad h) \quad \frac{5_{\frac{\pi}{3}} : \left(\sqrt{10}_{-\frac{5\pi}{2}}\right)^{3}}{\left(\sqrt{5}_{\frac{\pi}{4}} \cdot 5_{-\frac{\pi}{2}}\right)^{4}}$$

E. RAÍCES DE NÚMEROS COMPLEJOS EN FORMA POLAR. REPRESENTACIÓN GRÁFICA

6.21. Calcula todas las soluciones de las siguientes raíces de números complejos mediante el teorema de Moivre.

a)
$$\sqrt[6]{32_{120^{\circ}}}$$

b)
$$\sqrt[4]{81_{-210^{\circ}}}$$

$$c) \sqrt[4]{625 \frac{\pi}{3}}$$

$$d) \sqrt[5]{t}$$

$$e)\sqrt[4]{16}$$

$$f) \sqrt[5]{3-4}$$

$$(g)^{3}\sqrt{3} + (g)^{3}$$

h)
$$\sqrt[5]{-2-2}$$

6.22. Representa con GeoGebra, las raíces de cada uno de los apartados del ejercicio anterior.

6.23. Resuelve las siguientes ecuaciones dando todas las soluciones complejas,

a)
$$x^4 + 1 = 0$$

b)
$$x^4 + 27x = 0$$

a)
$$x^4 + 1 = 0$$
 b) $x^4 + 27x = 0$ c) $x^3 - x^2 + 2x - 2 = 0$

e)
$$x^3 - 8i = 0$$

e)
$$x^3 - 8i = 0$$
 f) $x^6 + 16x^2 = 0$ g) $x^6 + ix = 0$

$$g) x^6 + ix = 0$$